课程大纲:
第一课:机器学习的数学基础1 - 数学分析
1. 机器学习的一般方法和横向比较
2. 数学是有用的:以SVD为例
3. 机器学习的角度看数学
4. 复习数学分析
5. 直观解释常数e
6. 导数/梯度
7. 随机梯度下降
8. Taylor展式的落地应用
9. gini系数
10. 凸函数
11. Jensen不等式
12. 组合数与信息熵的关系
第二课:机器学习的数学基础2 - 概率论与贝叶斯先验
1. 概率论基础
2. 古典概型
3. 贝叶斯公式
4. 先验分布/后验分布/共轭分布
5. 常见概率分布
6. 泊松分布和指数分布的物理意义
7. 协方差(矩阵)和相关系数
8. 独立和不相关
9. 大数定律和中心极限定理的实践意义
10.深刻理解最大似然估计MLE和最大后验估计MAP
11.过拟合的数学原理与解决方案
第三课:机器学习的数学基础3 - 矩阵和线性代数
1. 线性代数在数学科学中的地位.
2. 马尔科夫模型
3. 矩阵乘法的直观表达
4. 状态转移矩阵
5. 矩阵和向量组
6. 特征向量的思考和实践计算#
7. QR分解
8. 对称阵、正交阵、正定阵
9. 数据白化及其应用
10.向量对向量求导
11.标量对向量求导
12.标量对矩阵求导
第四课:python基础1 - Python及其数学库
1. 解释器Python2.7与IDE:Anaconda/Pycharm
2. Python基础:列表/元组/字典/类/文件
3. Taylor展式的代码实现
4. numpy/scipy/matplotlib/panda的介绍和典型使用
5. 多元高斯分布
6. 泊松分布、幂律分布
7. 典型图像处理
第五课:Python基础2 - 机器学习库
1. scikit-learn的介绍和典型使用)
2. 损失函数的绘制
3. 多种数学曲线
4. 多项式拟合
5. 快速傅里叶变换FFT
6. 奇异值分解SVD
7. Soble/Prewitt/Laplacian算子与卷积网络
8. 卷积与(指数)移动平均线
9. 股票数据分析
第六课:Python基础3 - 数据清洗和特征选择
1. 实际生产问题中算法和特征的关系
2. 股票数据的特征提取和应用
3. 一致性检验5
4. 缺失数据的处理
5. 环境数据异常检测和分析
6. 模糊数据查询和数据校正方法、算法、应用2
第七课: 回归
1. 线性回归
2. Logistic/Softmax回归
3. 广义线性回归
4. L1/L2正则化
5. Ridge与LASSO
6. Elastic Net$
7. 梯度下降算法:BGD与SGD,
8. 特征选择与过拟合
9. Softmax回归的概念源头
10.最大熵模型)
11.K-L散度
第八课:回归实践
1. 机器学习sklearn库介绍-
2. 回归代码实现和调参9
3. Ridge回归/LASSO/Elastic Net
4. Logistic/Softmax回归
5. 广告投入与销售额回归分析;
6. 鸢尾花数据集的分类
7. 回归代码实现和调参
8. 交叉验证
9. 数据可视化 _
第九课:决策树和随机森林%
1. 熵、联合熵、条件熵、KL散度、互信息
2. 最大似然估计与最大熵模型
3. ID3、C4.5、CART详解
4. 决策树的正则化
5. 预剪枝和后剪枝
6. Bagging
7. 随机森林,
8. 不平衡数据集的处理
9. 利用随机森林做特征选择
10. 使用随机森林计算样本相似度7
第十课:随机森林实践-
1. 随机森林与特征选择
2. 决策树应用于回归.
3. 多标记的决策树回归
4. 决策树和随机森林的可视化
5. 葡萄酒数据集的决策树/随机森林分类#
第十一课:提升
1. 提升为什么有效
2. Adaboost算法
3. 加法模型与指数损失
4. 梯度提升决策树GBDT5
5. XGBoost算法详解, ^
第十二课:XGBoost实践
. }! G0 A3 l8 u
1. 自己动手实现GBDT
2. XGBoost库介绍
3. Taylor展式与学习算法
4. KAGGLE简介5
5. 泰坦尼克乘客存活率估计
第十三课:SVM
1. 线性可分支持向量机)
2. 软间隔的改进
3. 损失函数的理解
4. 核函数的原理和选择
5. SMO算法
6. 支持向量回归SVR
第十四课:SVM实践
1. libSVM代码库介绍:
2. 原始数据和特征提取.
3. 调用开源库函数完成SVM
4. 葡萄酒数据分类,
5. 数字图像的手写体识别 ~
6. SVR用于时间序列曲线预测
7. SVM、Logistic回归、随机森林三者的横向比较-
第十五课:聚类
1. 各种相似度度量及其相互关系
2. Jaccard相似度和准确率、召回率
3. Pearson相关系数与余弦相似度
4. K-means与K-Medoids及变种
5. AP算法(Sci07)/LPA算法及其应用
6. 密度聚类DBSCAN/DensityPeak(Sci14)#
7. 谱聚类SC
8. 聚类评价和结果指标
第十六课:聚类实践
1. K-Means++算法原理和实现
2. 向量量化VQ及图像近似2
3. 并查集的实践应用
4. 密度聚类的代码实现
5. 谱聚类用于图片分割
第十七课:EM算法
1. 最大似然估计
2. Jensen不等式
3. 朴素理解EM算法
4. 精确推导EM算法
5. EM算法的深入理解
6. 混合高斯分布
7. 主题模型pLSA
第十八课:EM算法实践
1. 多元高斯分布的EM实现
2. 分类结果的数据可视化
3. EM与聚类的比较2
4. Dirichlet过程EM,
5. 三维及等高线等图件的绘制4
6. 主题模型pLSA与EM算法
第十九课:贝叶斯网络
1. 朴素贝叶斯
2. 贝叶斯网络的表达
3. 条件概率表参数个数分析"
4. 马尔科夫模型
5. D-separation"
6. 条件独立的三种类型
7. Markov Blanket
8. 混合(离散+连续)网络:线性高斯模型
9. Chow-Liu算法:最大权生成树MSWT
第二十课:朴素贝叶斯实践'
1. GaussianNB
2. MultinomialNB9
3. BernoulliNB
4. 朴素贝叶斯用于鸢尾花数据
5. 朴素贝叶斯用于18000+篇新闻文本的分类
第二十一课:主题模型LDA
1. 贝叶斯学派的模型认识
2. 共轭先验分布
3. Dirichlet分布
4. Laplace平滑
5. Gibbs采样详解
第二十二课:LDA实践+
1. 网络爬虫的原理和代码实现
2. 停止词和高频词*
3. 动手自己实现LDA
4. LDA开源包的使用和过程分析
5. Metropolis-Hastings算法
6. MCMC
7. LDA与word2vec的比较
第二十三课:隐马尔科夫模型HMM
1. 概率计算问题7
2. 前向/后向算法
3. HMM的参数学习
4. Baum-Welch算法详解
5. Viterbi算法详解
6. 隐马尔科夫模型的应用优劣比较2
第二十四课:HMM实践
1. 动手自己实现HMM用于中文分词
2. 多个语言分词开源包的使用和过程分析
3. 文件数据格式UFT-8、Unicode
4. 停止词和标点符号对分词的影响:
5. 前向后向算法计算概率溢出的解决方案
6. 发现新词和分词效果分析
7. 高斯混合模型HMM
8. GMM-HMM用于股票数据特征提取
郑重声明:
本站所有内容均由互联网收集整理、网友上传,并且以计算机技术研究交流为目的,仅供大家参考、学习,不存在任何商业目的与商业用途。
若您需要商业运营或用于其他商业活动,请您购买正版授权并合法使用。
我们不承担任何技术及版权问题,且不对任何资源负法律责任。
如遇到资源无法下载,请点击这里失效报错。失效报错提交后记得查看你的留言信息,24小时之内反馈信息。
如有侵犯您的版权,请给我们来信:admin@cniao8.com,我们会尽快处理,并诚恳的向你道歉!
[PHP源码] 【新token量化钱包】2022更新量化/多币种推荐奖励理财源码区块/矿机/新token钱包源码带安装视频教程
[PHP源码] 【合约区块链系统】亲测全新UI改版超漂亮区块链合约交易平台多币矿机系统源码
[PHP源码] 【银海期货区块盘】新版PHP虚拟实体交易盘原油木材石材币等稀有金属的交易所源码[附安装说明]
[PHP源码] 【新版钱包量化区块链挖矿系统】某宝运营级TOK多币区块系统带推荐奖励+认筹+锁仓+交易大厅
[微信源码] 淘宝购买的云开发喝酒神器2.0微信小程序源码(带流量主和重启人生)
[discuz插件] 价值500元定制的DZ论坛会员组开通插件 码支付DZ插件
[discuz插件] 价值500元定制的DZ论坛邀请码插件 码支付邀请码插件
[网赚营销] 小淘项目组网赚永久会员,绝对是具有实操价值的,适合有项目做需要流程【持续更新】
[网赚营销] 抖音无人直播广场舞,没赶上云蹦迪,一定要赶上云广场舞【软件+教程+素材】