[↓↓↓资源简介↓↓↓]
设置hadoop入门与精通这门课程的初衷:
Hadoop技术本身并不是新技术,而是互联网时代成就了它,互联网产生了大量的
数据,传统的服务器解决方案成本太高,Hadoop分布式处理技术可以解决这个问题,随着淘宝、百度、腾讯等知名公司的成功案例,越来越多互联网公司也都开始使用。
Hadoop是云计算的
基础。而绝大部分的云计算中的分布式存储和计算都是使用hadoop的。云计算在国家十二五规划中也有重要章节讨论,云计算已经被提高到国家中长期发展战略规划中。
根据店主实际经验,Hadoop
工程师目前招聘困难,人才紧缺,就本人所属公司来讲,工资比较open,不计年终奖金情况下,一般初级月薪10k-15k,中高级20k-35k不等。
Hadoop最核心的两大重点HDFS分布式与MapReduce编程模型,主要解决了超大文件存储与数据应用的问题,当然hadoop家语言编写族还有Hive、Hbase、Pig、ZooKeeper等等,其实这些开源项目无非是解决在大数据应用过程中存在的某些特殊问题。所以我认为学习思路很重要,如何从庞大的知识体系中去理解核心,掌握精髓,在工作中能够善学善用,这才是成长和提高的最佳学习方法。还有hadoop本身是个开源项目,由java编写,而且是为linux系统而生,所以在学习hadoop之前除了计算机基础知识,还要具备Linux与Java基础,学习linux与java思路也是一样,抓核心学重点。切记!学习编程技术一定要多动手多实践!
总结: 学习方法很重要,需要坚持,自己要有一定解决问题的能力,前途无量!
打好基础对职业发展非常重要,切忌只学不动手,需多实践。学习抓重点,Hadoop项目源码是用Java语言编写,而且分布式服务器多数是Linux操作系统,所以Java基础与linux基础是必须掌握的技能。对大数据对企业的的价值,整体的架构要有宏观认识,不能过于局限。做大数据也离不开关系数据,Oracle可以学习了解。
【知识补充】Hadoop2.X大数据平台视频教程 14课
Hadoop工程师不仅仅是会hadoop,这只是基础技术层面的必不可少的工具。Hadoop的核心是HDFS和MapReduce.HDFS提供了海量数据的存储 MapReduce提供了对数据的计算。学习Flume、storm、Spark、python等技术会为您在解决实际问题时办法更多,更有效率。Redis与MongoDB是通过非关系数据存储减缓关系数据库压力,提高访问性能,同时也会产生海量数据,建议了解。
【重点课程】大数据的Flume日志收集利器 12课
【重点课程】大数据平台Storm入门到
精通 15课
【重点课程】大数据平台Spark入门与精通 10课
hadoop只是基础技术层面的必不可少的工具。Hadoop的核心是HDFS和MapReduce.随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。数据仓库、数据挖掘等技术是整合数据并使数据产生价值的技术,建议学习了解。
【重点课程】Hadoop源码解析与开发实战 43课
【重点课程】大数据HBase源码解析与开发实战 26课
【重点课程】大数据Hive源码解析与开发实战 24课
【重点课程】大数据Hadoop数据挖掘实战教程 6课
参考复习篇的课程重点在于知识补充,里面也有非常棒的Hadoop视频课程,为了避免之前学习过程中有难于理解的部分,可以换个老师来学,不同老师给予不同方式的讲解,加深理解。同时这里通过电商的案例讲解了数据仓库的知识理论与实践,对大数据应用层面会有很大的帮助,hadoop更多是在海量数据的存储与提取层面的技术,因为你做大数据,不就是为了让其产生价值么。
【知识补充】hadoop视频教程vip会员全套 20课
【知识补充】Hadoop大数据零基础实战培训教程 30课