深度学习最前沿技术 Kaggle案例实战课程 深度学习之Kaggle实战指南
===============课程目录===============
├第01课.机器学习解决问题综述课.mp4
├第03课_kaggle案例实战班.mp4
├第04课_kaggle案例实战班.mp4
├第05课_kaggle案例实战班.mp4
├第06课_kaggle案例实战班.mp4
├第07课_kaggle案例实战班.mp4
├第08课_kaggle案例实战班.mp4
├第二节.mp4
├<代码>
│ ├<lecture01>
│ │ ├blending.py
│ │ ├cs228-python-tutorial.ipynb
│ │ ├Feature_engineering_and_model_tuning.zip
│ │ ├<Feature_engineering_and_model_tuning>
│ │ │ ├<Feature-engineering_and_Parameter_Tuning_XGBoost>
│ │ │ │ ├Feature Engineering.ipynb
│ │ │ │ ├Test.csv
│ │ │ │ ├test_modified.csv
│ │ │ │ ├Train.csv
│ │ │ │ ├train_modified.csv
│ │ │ │ ├XGBoost models tuning.ipynb
│ │ │ │ ├<.ipynb_checkpoints>
│ │ │ │ │ ├Feature Engineering-checkpoint.ipynb
│ │ │ │ │ └XGBoost models tuning-checkpoint.ipynb
│ │ │ ├<Kaggle_Titanic>
│ │ │ │ ├test.csv
│ │ │ │ ├Titanic.ipynb
│ │ │ │ ├train.csv
│ │ │ │ ├<.ipynb_checkpoints>
│ │ │ │ │ └Titanic-checkpoint.ipynb
│ │ │ ├<Kaggle-Bicycle-Example>
│ │ │ │ ├Kaggle_Bicycle_Example.ipynb
│ │ │ │ ├kaggle_bike_competition_train.csv
│ │ │ │ ├<.ipynb_checkpoints>
│ │ │ │ │ └Kaggle_Bicycle_Example-checkpoint.ipynb
│ │ │ │ ├<Kaggle_Bicycle_Example_files>
│ │ │ │ │ ├Kaggle_Bicycle_Example_34_0.png
│ │ │ │ │ ├Kaggle_Bicycle_Example_42_0.png
│ │ │ │ │ ├Kaggle_Bicycle_Example_43_0.png
│ │ │ │ │ ├Kaggle_Bicycle_Example_44_0.png
│ │ │ │ │ ├Kaggle_Bicycle_Example_45_0.png
│ │ │ │ │ ├Kaggle_Bicycle_Example_46_1.png
│ │ │ │ │ ├Kaggle_Bicycle_Example_47_1.png
│ │ │ │ │ └Kaggle_Bicycle_Example_49_1.png
│ ├<lecture02>
│ │ ├<house price>
│ │ │ ├data_description.txt
│ │ │ ├<_ipynb_checkpoints>
│ │ │ ├<input>
│ │ │ │ ├sample_submission.csv
│ │ │ │ ├test.csv
│ │ │ │ └train.csv
│ │ │ ├<notebook>
│ │ │ │ ├house_price.html
│ │ │ │ ├house_price.ipynb
│ │ │ │ ├house_price_advanced.html
│ │ │ │ ├house_price_advanced.ipynb
│ │ │ │ ├<.ipynb_checkpoints>
│ │ │ │ │ ├house_price_advanced-checkpoint.ipynb
│ │ │ │ │ └house_price-checkpoint.ipynb
│ │ ├<news stock>
│ │ │ ├<_ipynb_checkpoints>
│ │ │ ├<input>
│ │ │ │ ├Combined_News_DJIA.csv
│ │ │ │ ├DJIA_table.csv
│ │ │ │ └RedditNews.csv
│ │ │ ├<notebook>
│ │ │ │ ├news_stock.html
│ │ │ │ ├news_stock.ipynb
│ │ │ │ ├<.ipynb_checkpoints>
│ │ │ │ │ └news_stock-checkpoint.ipynb
│ ├<lecture03>
│ │ ├avazu-CTR-Prediction-LR.zip
│ │ ├feature.search
│ │ ├feature.search_ads
│ │ ├feature_map.search_ads
│ │ ├generate_train_feature_mapper.py
│ │ ├generate_train_feature_reducer.py
│ │ ├kaggle-avazu-rank1.zip
│ │ ├kaggle-avazu-rank2.zip
│ │ ├search_ads_feature.sample
│ │ ├search_click_data.sample
│ │ ├Spark-Criteo-CTR-Prediction.ipynb
│ │ └xgb_ads.conf
│ ├<lecture04>
│ │ ├<input数据太大。就不传了。自己下载吧~ - 老师留>
│ │ ├<notebook>
│ │ │ ├news_stock.html
│ │ │ ├news_stock_advanced.html
│ │ │ ├search relevance.ipynb
│ │ │ ├search relevance_advanced.ipynb
│ │ │ ├search+relevance.html
│ │ │ ├search+relevance_advanced.html
│ │ │ ├<.ipynb_checkpoints>
│ │ │ │ ├search relevance_advanced-checkpoint.ipynb
│ │ │ │ └search relevance-checkpoint.ipynb
│ ├<lecture05>
│ │ ├energy_forecasting_notebooks.zip
│ │ └subway_prediction_notebook.zip
│ ├<lecture06>
│ │ ├cat_dog.html
│ │ ├char_rnn.html
│ │ ├image_search.html
│ │ ├Kaggle第06课:走起~深度学习.pdf
│ │ ├Kaggle第06课:走起~深度学习.pptx
│ │ ├news_stock_advanced.html
│ │ ├word_rnn.html
│ │ ├<img>
│ │ │ ├chi_square.png
│ │ │ └RGBHistogram.jpg
│ │ ├<猫狗的数据>
│ │ │ ├cats-vs-dogs.txt
│ │ │ ├sample_submission.csv
│ │ │ ├test.zip
│ │ │ └train.zip
│ ├<lecture07>
│ │ ├data.zip
│ │ ├Kaggle event recommendation competition.ipynb
│ │ ├kaggle-event-recommendation-rank1.zip
│ │ └Rossmann_Store_Sales_competition.ipynb
│ ├<lecture08>
│ │ └PPD_RiskControl_Competition.zip
├<课件>
│ ├Kaggle第05课:能源预测与分配问题.pdf
│ ├Kaggle第06课:走起~深度学习.pdf
│ ├Kaggle第06课:走起~深度学习.pptx
│ ├<lecture01>
│ │ ├Kaggle第01课:机器学习算法、工具与流程概述.pdf
│ │ └分享的链接.txt
│ ├<lecture02>
│ │ └Kaggle第02课:经济金融相关问题.pdf
│ ├<lecture03>
│ │ ├kaggle-2014-criteo.pdf
│ │ ├kaggle-avazu.pdf
│ │ ├predicting-clicks-facebook.pdf
│ │ ├阿里妈妈:大数据下的广告排序技术及实践.pdf
│ │ ├百度凤巢:DNN在凤巢CTR预估中的应用.pdf
│ │ ├从FM到FFM.pdf
│ │ ├第3课--排序与CTR预估.pdf
│ │ ├京东电商广告和推荐系统的机器学习系统实践.pdf
│ │ └腾讯广点通:效果广告中的机器学习技术.pdf
│ ├<lecture04>
│ │ └Kaggle第四课.pdf
│ ├<lecture05>
│ │ └第5课:能源预测与分配问题.pdf
│ ├<lecture07>
│ │ └第7课:推荐与销量预测相关问题.pdf
│ ├<lecture08>
│ │ ├第8课:金融风控问题.pdf
│ │ └金融风控大赛解决方案.pdf
上一篇:数据分析和数据挖掘精华实战课程 数据分析视频教程 数据挖掘实战教程 小象学院
下一篇:大数据分析/数学建模-MATLAB多套视频教程合集+200多本MATLAB技术文档+电子书
郑重声明:
本站所有内容均由互联网收集整理、网友上传,并且以计算机技术研究交流为目的,仅供大家参考、学习,不存在任何商业目的与商业用途。
若您需要商业运营或用于其他商业活动,请您购买正版授权并合法使用。
我们不承担任何技术及版权问题,且不对任何资源负法律责任。
如遇到资源无法下载,请点击这里失效报错。失效报错提交后记得查看你的留言信息,24小时之内反馈信息。
如有侵犯您的版权,请给我们来信:admin@cniao8.com,我们会尽快处理,并诚恳的向你道歉!
[PHP源码] 【新token量化钱包】2022更新量化/多币种推荐奖励理财源码区块/矿机/新token钱包源码带安装视频教程
[PHP源码] 【合约区块链系统】亲测全新UI改版超漂亮区块链合约交易平台多币矿机系统源码
[PHP源码] 【银海期货区块盘】新版PHP虚拟实体交易盘原油木材石材币等稀有金属的交易所源码[附安装说明]
[PHP源码] 【新版钱包量化区块链挖矿系统】某宝运营级TOK多币区块系统带推荐奖励+认筹+锁仓+交易大厅
[微信源码] 淘宝购买的云开发喝酒神器2.0微信小程序源码(带流量主和重启人生)
[discuz插件] 价值500元定制的DZ论坛会员组开通插件 码支付DZ插件
[discuz插件] 价值500元定制的DZ论坛邀请码插件 码支付邀请码插件
[网赚营销] 小淘项目组网赚永久会员,绝对是具有实操价值的,适合有项目做需要流程【持续更新】
[网赚营销] 抖音无人直播广场舞,没赶上云蹦迪,一定要赶上云广场舞【软件+教程+素材】